# An Investigation of Top Quark Pair Production Mechanisms



Shabnaz Pashapour, Pekka K. Sinervo

University of Toronto

CAP Conference June 07, 2005

### Outline

- Introduction
- The Difference
- The Method
- Calibration is the Key
- Sensitivity to Number of Gluons

- Dijet Comparison
- Summary/Outlook

### Introduction

• According to SM, in  $p\bar{p}$  collisions at  $\sqrt{s} \sim 2 \text{ TeV}$ 

• 
$$gg \rightarrow t\bar{t}$$
 ~ %15  
•  $q\bar{q} \rightarrow t\bar{t}$  ~ %85

- Measure  $\sigma_{(gg \to t\bar{t})}/\sigma_{(q\bar{q} \to t\bar{t})}$ 
  - Test of SM
  - Compare to bb production
  - Non-SM mechanisms may exist



• The difference comes from ISR



# The Difference

- Larger number of gluons
  - More particles
  - More jets close to beamline
- Track Multiplicity
  - Low  $p_T$  (0.3-3 GeV)
  - $|\eta| \le 1.1$
  - Matched to the event vertex
  - Separated from jets
  - Correct for area differences
- Forward Jet Multiplicity
  - $1.1 \le |\eta| \le 3.0$
  - $E_T \ge 9 \text{ GeV}$

Track if no magnetic field exists



Track in magnetic field

Jet of 0.4 and its annuli



# ttbar Comparisons



### The Method

- Map 2D distribution of forward jet multiplicity vs. number of charged particles
- Assign probabilities
  - ullet  $R_{q\overline{q}}$
  - *R*<sub>gg</sub>
- Get distribution of  $\zeta = \ln(R_{gg}/R_{qq})$
- Parameterize the distributions
- Fit the unknown sample

$$F(\zeta) = N_{t\bar{t}} [r_{gg} F_{gg}(\zeta) + (1 - r_{gg}) F_{q\bar{q}}(\zeta)]$$



6

### Calibration is the Key

- Can not rely on the modeling of gluon radiation
- Solution is to calibrate using data
  - W + n jet events
    - W with no jet is mainly  $q\overline{q}'$
    - As jet multiplicity increases, the gluon-content increases
  - Dijet events
    - Gluon-content decreases as the leading jet E<sub>T</sub> increases

Details of calibration samples:

Jet in W + 0, 1 or 2 jet categories:

- $E_T \ge 20$
- $|\eta| \leq 2$

Leading jet in dijet categories:

- starting from 100 GeV
- bins of 20 GeV
- up to 200 GeV

### Sensitive to Gluons

- MC studies show that track multiplicity is sensitive to number of gluons
  - Both initial and final state
  - Calibration samples allow us to explore this
- Little statistics in low gluon radiation for gg/qg sample
- Track multiplicity depends on the gluon radiation rather than n jet category





### Dijet comparisons

- Data and MC show same trends as gluon-content changes
- MC lacks Multiple Interaction (MI)
- MC is a  $2\rightarrow 2$  jet production





# W + n Jet Comparisons

- Data shows the increase expected in multiplicities
- MC shows the increase in W + 0 or W + 1 jet
  - W + 2 jet has large uncertainty





10

### Summary

- Have developed a method to separate gg and qq collisions
- Working on the optimization of technique
- Early studies show consistency of the calibration samples,
   MC and data
  - Number of modeling issues remain

# Next Steps

- Complete calibration studies
- Estimate the precision of technique
- Apply to the largest possible ttbar sample